	North American Commission	NAC(23)04
NASCO	Labrador Subsistence Food Fisheries - Mixed-Stock Fisheries Context Paper (Tabled by Canada)	Agenda item: 5

Labrador Subsistence Food Fisheries - Mixed-Stock Fisheries Context Paper (Tabled by Canada)

EXECUTIVE SUMMARY

- Atlantic salmon fisheries in Labrador that take place in estuaries and coastal areas using gillnets are considered to be mixed-stock fisheries. The management of these fisheries includes a number of conditions related to gear, seasons, weekly fishery closures, limits on total harvest using carcass tags, logbook catch reporting, and prohibition on sales.
- The majority of salmon harvested in these fisheries are within estuaries (82% in 2022) where the potential for the interception of non-local stocks is reduced.
- The logbook reporting rate (i.e., percentage of total tags reported) for the four user groups was 65% in 2022 (range 59% to 88%).
- The estimated total harvest (i.e., adjusted for non-reporting) in 2022 was 38.9 t (14 219 salmon by number, 8,398 small salmon and 5,821 large salmon). The reported harvest from 2011 to 2021 ranged from 26.7 t to 42.4 t .
- A sampling rate of at least 10% of the Labrador FSC and resident fisheries harvest is required to detect the low proportions of non-local stocks in these fisheries (ICES WGNAS 2021). Since 2020, sampling effort and genetic analyses were directed toward the northern and southern Labrador coasts where the interception of non-local stocks is most likely to occur.
- In 2022, 709 samples were collected in southern Labrador (SFA 2) representing 11% of the harvest (14% of the small harvest and 5% of the large harvest). In northern Labrador (SFA 1A), 104 tissue samples were collected representing 8% of the total harvest (12% of small harvest and 5% of large harvest). A total of 88 tissue samples were collected from central Labrador (SFA 1B) representing 1.3% of the Lake Melville harvest.
- A total of 872 tissue samples were successfully analysed for genetic origin. As in previous years, the majority of samples ($>95 \%$) assigned to Labrador genetic reporting groups. One small salmon ($<63 \mathrm{~cm}$ fork length) harvested in southern Labrador assigned to the USA genetic reporting group.
- In total, 12 Atlantic salmon samples (7 small salmon and 5 large salmon) of the 10082 samples analysed (0.1%) from the Labrador FSC and resident fisheries from 2006 to 2022 have assigned to the USA genetic reporting group.

INTRODUCTION

In support of the North American Commission agenda item to address mixed-stock fisheries in domestic waters of Commission member Parties, this document presents the following information regarding the 2022 Labrador mixed-stock fisheries:

- fisheries management measures
- preliminary catch by salmon size (small $<63 \mathrm{~cm}$ fork length and large $\geq 63 \mathrm{~cm}$ fork length) and location of harvest categories (in-river, estuarine, and coastal)
- summary of the biological sampling program and genetic origin of samples

There are currently three Atlantic salmon fisheries in Canada: (1) Indigenous food, social and ceremonial (FSC) fishery, (2) Labrador resident trout/charr fishery that permits a harvest of three salmon, and (3) in-river recreational angling fishery. All commercial Atlantic salmon fisheries under Canadian jurisdiction have been closed since 2000 and the sale of Canadian wild Atlantic salmon, regardless of fishery source, is prohibited.
The majority (93%) of Canada's 2022 preliminary Atlantic salmon harvest (100 t) was in-river (51%) and estuarine (42%). The remaining 7% was coastal.
FSC fisheries in Quebec and the Maritime provinces generally occur in close proximity to rivers and within tidal waters. The Labrador FSC and resident fisheries occur in both estuaries and coastal waters adjacent to remote coastal communities. These two Labrador fisheries have been shown to intercept salmon from other regions of eastern North America and are considered mixed-stock fisheries by NASCO.

MANAGEMENT MEASURES

Labrador is divided geographically in three Salmo Fishing Areas (SFAs) for fisheries management purposes: northern Labrador SFA 1A, central Labrador SFA 1B and southern Labrador SFA 2 (Figure 1).

In previous years, the fishing season and mesh sizes in the Labrador FSC and resident net fisheries were modified in an effort to reduce the capture of large salmon while maintaining the opportunity to harvest small salmon, trout, and charr.

General management measures:

- carcass tags are required to be placed on all harvested Atlantic salmon at time of capture
- catches are limited by the number of tags allocated
- the number of fishers is limited to one designate or licence holder per household
- only nylon twine netting is permitted (monofilament not permitted)
- net must be set in a straight line
- gear must be clearly marked with the full name of the fisher and other group specific information as required
- nets must be removed from the water between 6:00 pm Sunday and 6:00 pm Monday
- nets are not to be left unattended for a period of more than 24 hours
- completed catch logbook must be submitted to Fisheries and Oceans Canada (DFO) at the end of season
- all sales of Atlantic salmon are prohibited

Resident Subsistence Trout Fishery

There is a long-standing tradition of trout net fishing in Labrador targeting Brook trout/Brook charr (Salvelinus fontinalis) and Arctic charr (Salvelinus alpinus). Following the 1998 closure of the commercial salmon fishery in Labrador, there was an increased dependency on the trout fishery for subsistence purposes. A subsistence trout net licence is required and provided to residents of Labrador that permits the harvest of trout and three salmon. In 2022, 248 licences were issued and the number varied by SFA:

- 5 in northern Labrador SFA 1A
- 151 in central Labrador SFA 1B
- 92 in southern Labrador SFA 2

Additional management measures:

- seasonal limit of 50 trout/charr
- maximum harvest of three Atlantic salmon
- fishing must cease when either the three salmon or 50 trout/charr limits are taken
- licence holders are permitted to use a single net with a maximum length of 15 fathoms
- mesh size permitted is not less than 102 mm (4 inches)
- mesh size greater than 127 mm (5 inches) is not permitted in Northern Labrador
- seasons in 2022 varied by SFA:
- northern Labrador SFA 1A: 1 July to 27 July
- central Labrador SFA 1B: 11 June to 3 July and 22 July to 14 August (Kenamu River area closes 31 July)
- southern Labrador SFA 2: 9 July to 29 July

Indigenous food, social, and ceremonial (FSC) fisheries
In response to the Supreme Court of Canada decision interpreting Section 35 of the Constitution Act of 1982, DFO provided resource access to Indigenous groups of Labrador for FSC purposes. Between 1999 and 2005, a FSC fishery was made available for members of the Labrador Inuit Association (LIA) in northern Labrador (SFA 1A) as well as the Lake Melville area in central Labrador (SFA 1B) (Figure 1). In 2006, with the signing of the LIA Land Claims Agreement, a subsistence fishery with the Nunatsiavut Government (NG) which is the successor organization to the LIA was negotiated within Upper Lake Melville (ULM) and the Labrador Inuit Settlement Area (LISA). The Innu Nation also fishes for salmon in Lake Melville from the community of Sheshatshiu and in Northern Labrador from Natuashish (Figure 1). The NunatuKavut Community Council (NCC) negotiated a subsistence salmon fishery in southern Labrador (SFA 2) in 2004 and ULM (SFA 1B) in 2013 (Figure 1). A total of 18200 tags were allocated to Labrador FSC fisheries in 2022.

Specific 2022 management measures by FSC group:

Nunatsiavut Government

- Approximately 7200 beneficiaries
- 727 designated fishers
- 8700 tags issued
- Upper Lake Melville (ULM):
- 4000 tags issued
- mesh size: minimum 3 inch to maximum 4 inch
- maximum length of net permitted per household is 25 fathoms
- season extends from 15 June to 8 July and 20 July to 1 September
- fishing permitted in tidal waters of the ULM area outside LISA
- Labrador Inuit Settlement Area (LISA)
- 4700 tags issued
- various minimum mesh size requirements from 3 to 5 inches
- maximum length of net permitted per household is 25 fathoms
- season extends from 15 June to 31 August
- fishing permitted in tidal waters in various locations close to communities

Innu Nation

- Approximately 2200 members
- 117 designated fishers
- 2500 tags issued
- Sheshatshiu
- 2000 tags issued
- mesh size: minimum 3 inch to maximum 4 inch
- maximum net length based on location: 225 feet or 37.5 fathoms
- season extends from 15 June to 15 September
- fishing in tidal waters does not occur outside ULM
- Natuashish
- 500 tags issued
- mesh size: minimum 3.5 inch to maximum 5 inch
- maximum length of net permitted per household is 25 fathoms
- season extends from 15 June to 15 September
- fishing permitted in the tidal waters near the community

NunatuKavut Community Council

- Approximately 6500 members
- 1227 designated fishers
- 7000 tags issued
- Southern Labrador
- 6400 tags issued
- mesh size: minimum 3.5 inch to maximum 4 inch
- maximum length of net permitted per household is 25 fathoms
- season extends from 1 July to 7 August
- fishing is permitted in tidal waters
- Upper Lake Melville
- 600 tags issued
- mesh size: minimum 3.5 inch to maximum 4 inch
- maximum length of net permitted per household is 25 fathoms
- season extends from 15 June to 8 July, and 20 July to 1 September
- fishing permitted in tidal waters of the ULM area outside LISA

FISHERIES HARVEST

Labrador FSC and resident fishers are required to use logbooks to record catch and effort information, including no effort (i.e., did not fish) or the number of unused tags. Data from returned logbooks are compiled by each user group and submitted to Fisheries and Oceans Canada (DFO) at the end of each season. Total catch for each user group is estimated by raising the reported catches proportionately based on the number of tags issued and reported (used or unused). The 2022 logbook reporting rate (i.e., percentage of total tags reported) for the four user groups was 65% (range 59% to 88%).

The total catch of Atlantic salmon in 2022 from the Labrador FSC and resident fisheries was 38.9 t . The proportion of catch from estuarine and coastal areas is based on fixed estimates for each community (Table 1). These estimates have been used since 2007 and were provided by the local Nunatsiavut Conservation Officers in northern Labrador (SFA 1A) and the community of Rigolet (SFA 1B), DFO Fishery Officers and Nunatukavut Community Council Guardians in southern Labrador (SFA 2).
The majority of the Labrador FSC and resident fisheries catch, 32.0 t (82.2%), were harvested from estuaries (Tables 2 and 3). From 2000 to 2022, the percentage of salmon taken from coastal areas ranged from 15% to 26%. Details of the 2022 Atlantic salmon catch (by weight and number) within each Salmon Fishing Area (SFA) by salmon size category (small < 63 cm fork length and large $\geq 63 \mathrm{~cm}$ fork length) are provided in Table 4. In Labrador, small salmon ($<63 \mathrm{~cm}$ fork length) are predominantly maiden one-sea winter (1SW) and large salmon (≥ 63 cm fork length) are maiden two-sea winter (2 SW) or repeat spawners (1 SW and 2 SW). The large salmon comprised 58.4% by weight and 40.9% by number of the 2022 harvest.

The Labrador resident fishery harvest decreased after 2003 as many individuals fishing under the Labrador resident licence began fishing and reporting under the NCC negotiated subsistence fishery. Since 2004, the harvest of Atlantic salmon in the resident fishery has varied between 1.4 t and 3.2 t , with large salmon representing between 23% and 67% of the total harvest of salmon by weight and 13% to 51% of the total by number. In 2022, the total harvest was $1.4 \mathrm{t}(0.64 \mathrm{t} \mathrm{small}$ salmon and 0.803 t large salmon) and 534 salmon by number (320 small salmon and 214 large salmon) (Table 5).

In 2022, the Labrador FSC fisheries harvest was 37.4 t (15.5 t small salmon and 21.9 t large salmon) and 13685 salmon by number (8078 small salmon and 5607 large salmon) (Table 6). The Labrador FSC harvest between 2004 and 2020 ranged from 24.8 t to 40.4 t , with large salmon representing between 34% and 67% of the total harvest of salmon by weight and 21% to 48% of the total by number.

SAMPLING PROGRAM

Salmon harvested in the Labrador FSC and resident fisheries were sampled opportunistically for length, weight, sex, scales (for age interpretation), and tissue (for genetic analysis). Fish were also examined for the presence of external tags or marks.
In 2022, a total of 901 harvested salmon were sampled (6.3% of harvest by number): 104 from northern Labrador (SFA 1A), 88 from central Labrador (SFA 1B), and 709 from southern Labrador (SFA 2).

Sampling was conducted in 12 communities (3 in SFA 1A, 2 in SFA 1B, and 7 in SFA 2) throughout the fishing season. Details of the distribution of the samples and bi-weekly harvest can be found in Table 7 and Figure 2. Sample and catch by salmon size category are presented in Table 8.

Not all scales can be interpreted for sea age and/or river age. Based on the interpretation of the scale samples for sea age ($\mathrm{n}=883$), percentage sea age composition was 84% 1SW, $12 \% 2 \mathrm{SW}$ and 4.0% previously spawned salmon. One sample was 3 SW. All salmon samples interpreted for river age ($\mathrm{n}=876$) were 2 to 7 years (modal age 4, 57\%) (Table 9). There was no river age 1 and few river age $2(\mathrm{n}=2)$ salmon sampled, suggesting, as in previous years (2006 to 2021), that very few salmon from southern stocks of North America (USA, Scotia-Fundy) are exploited in these fisheries.

Genetic origin of harvest

In 2022, 872 harvested Atlantic salmon tissue samples were successfully analysed for genetic origin using the SNP panel with 31 range-wide reporting groups (Table 10 and 11, Figure 3 and 4).

The estimated percent contributions (and associated 95% credible interval) to each reporting group in 2022 are shown in Table 12 and summarized in Figure 5. As in previous years (20062021), the estimated origin of the samples from the Labrador FSC harvest were dominated ($>95 \%$) by the three Labrador reporting groups. Furthermore, samples from each SFA (SFA 1A, SFA 1B, and SFA 2) assigned to the corresponding genetic reporting groups suggesting largely local harvest.
One small salmon (< 63 cm fork length) harvested in southern Labrador (SFA 2) in 2022 assigned to the USA genetic reporting group. In total, 12 Atlantic salmon samples (7 small salmon and 5 large salmon) of the 10082 samples analysed (0.1%) from the Labrador FSC and resident fisheries from 2006 to 2022 have assigned to the USA genetic reporting group (Figure $6)$.

LITERATURE CITED

Bradbury, Ian \& Lehnert, Sarah \& Messmer, Amber \& Duffy, S \& Verspoor, E \& Kess, Tony \& Gilbey, John \& Wennevik, Vidar \& Robertson, Martha \& Chaput, G \& Sheehan, T \& Bentzen, Paul \& Dempson, J \& Reddin, D. 2021. Range-wide genetic assignment confirms long-distance oceanic migration in Atlantic salmon over half a century. ICES Journal of Marine Science. 78. 10.1093/icesjms/fsaa152
ICES. 2021. Working Group on North Atlantic Salmon (WGNAS). ICES Scientific Reports. 3: 29.407 pp . https://doi.org/10.17895/ices.pub. 7923

Table 1. The proportion of the Labrador FSC and resident fisheries harvest from estuarine and coastal areas is based on fixed estimates for each community.

Area/Community	Proportion harvest	
	Estuarine	Coastal
Northern SFA 1A		
Makkovik	0.75	0.25
Postville	0.90	0.10
Hopedale	0.10	0.90
Nain	0.00	1.00
Central SFA 1B		
Lake Melville	1.00	0.00
Rigolet	0.85	0.15
Southern SFA 2		
Sandwich Bay	0.85	0.15
Black Tickle	0.01	0.99
Charlottetown to Lodge Bay	0.70	0.30

Table 2. Labrador FSC and resident fisheries Atlantic salmon harvest (t) by geographic location from 2000 to 2022 preliminary (2022P).

Year	Harvest (t)		Harvest (\%)		
	Estuarine	Coastal	Total	Estuarine	Coastal
2000	13.3	2.3	15.6	85.0	15.0
2001	13.5	2.8	16.3	82.9	17.1
2002	14.0	3.6	17.6	79.6	20.4
2003	17.5	4.6	22.1	79.1	20.9
2004	24.8	6.8	31.5	78.6	21.4
2005	24.7	7.2	31.9	77.5	22.5
2006	25.0	7.8	32.7	76.3	23.7
2007	20.5	6.0	26.5	77.3	22.7
2008	26.9	9.4	36.3	74.1	25.9
2009	22.6	7.2	29.8	75.9	24.1
2010	29.7	6.8	36.5	81.4	18.6
2011	34.2	7.8	42.0	81.5	18.5
2012	28.9	7.6	36.6	79.1	20.9
2013	31.8	8.1	40.0	79.7	20.3
2014	26.3	6.2	32.5	80.9	19.1
2015	34.2	8.2	42.4	80.6	19.4
2016	32.7	6.9	39.6	82.5	17.5
2017	30.3	9.0	39.4	77.1	22.9
2018	26.1	6.7	32.8	79.5	20.5
2019	31.3	6.5	37.8	82.7	17.3
2020	33.0	7.9	40.9	80.7	19.3
2021	29.3	7.2	36.5	80.3	19.7
2022 P	32.0	6.9	38.9	82.2	17.8

Table 3. Percent of the Labrador FSC and resident fisheries Atlantic salmon harvest taken in coastal areas by area from 2009 to 2022 preliminary (2022P).

	Percent coastal harvest			
Year	Northern SFA 1A	Central SFA 1B	Southern SFA 2	Labrador Total
2009	44.7	5.4	35.6	24.1
2010	40.1	3.4	32.2	18.6
2011	38.5	1.7	33.4	18.5
2012	47.5	5.5	30.1	20.9
2013	45.8	4.8	32.8	20.3
2014	43.7	5.0	32.2	19.1
2015	43.8	4.5	30.4	19.4
2016	45.4	3.5	31.1	17.5
2017	63.4	6.2	30.0	22.9
2018	44.2	5.0	31.9	20.5
2019	39.6	2.4	31.3	17.3
2020	44.1	2.9	30.3	19.3
2021	46.0	3.2	30.4	19.7
$2022 P$	44.4	1.8	30.7	17.8

Table 4. Preliminary 2022 Labrador FSC and resident fisheries Atlantic salmon harvest by weight (kg) and number for each area and salmon size category (small $<63 \mathrm{~cm}$ and large ≥ 63 cm). The percent large salmon harvest by weight and number are also provided.

| | Weight (kg) | | | Number of fish | | Percent Large | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Area | Small | Large | Total | Small | Large | Total | By
 weight | By
 number |
| Northern SFA 1A | 1011 | 3069 | 4080 | 525 | 787 | 1312 | 75.2 | 60.0 |
| Central SFA 1B | 6852 | 12476 | 19328 | 3506 | 3030 | 6536 | 64.5 | 46.4 |
| Southern SFA 2 | 8304 | 7165 | 15469 | 4367 | 2004 | 6371 | 46.3 | 31.5 |
| Labrador Total | 16167 | 22710 | 38877 | 8398 | 5821 | 14219 | 58.4 | 40.9 |

Table 5. Preliminary 2022 Labrador resident fisheries Atlantic salmon harvest by weight (kg) and number for each area and salmon size category (small $<63 \mathrm{~cm}$ and large $\geq 63 \mathrm{~cm}$). The percent large salmon harvest by weight and number are also provided.

| | Weight (kg) | | | Number of fish | | Percent Large | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Small | Large | Total | Small | Large | Total | By
 weight | By
 number |
| Northern SFA 1A | 12 | 27 | 39 | 7 | 6 | 13 | 69.2 | 46.2 |
| Central SFA 1B | 275 | 520 | 795 | 133 | 136 | 269 | 65.4 | 50.6 |
| Southern SFA 2 | 350 | 256 | 606 | 180 | 72 | 252 | 42.2 | 28.6 |
| Labrador Total | 637 | 803 | 1440 | 320 | 214 | 534 | 55.8 | 40.1 |

Table 6. Preliminary 2022 Labrador FSC fisheries Atlantic salmon harvest by weight (kg) and number for each area and salmon size category (small $<63 \mathrm{~cm}$ and large $\geq 63 \mathrm{~cm}$). The percent large salmon harvest by weight and number are also provided.

| | Weight (kg) | | | Number of fish | | Percent Large | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Area | Small | Large | Total | Small | Large | Total | By
 weight | By
 number |
| Northern SFA 1A | 999 | 3042 | 4041 | 518 | 781 | 1299 | 75.3 | 60.1 |
| Central SFA 1B | 6577 | 11956 | 18533 | 3373 | 2894 | 6267 | 64.5 | 46.2 |
| Southern SFA 2 | 7954 | 6909 | 14863 | 4187 | 1932 | 6119 | 46.5 | 31.6 |
| Labrador Total | 15530 | 21907 | 37437 | 8078 | 5607 | 13685 | 58.5 | 41.0 |

Table 7. Bi-weekly Atlantic salmon harvest and samples collected from the 2022 Labrador FSC and resident fisheries. Note: 2 samples with incomplete data (Fin Clip Only) were not included in the table.

Harvest	SFA 1A		SFA 1B	SFA 2		Total		
	Number	\% of Harvest						
Jun 15-30	1	0.1	1032	15.8	CLOSED	1033	7.3	
Jul 1-15	407	31.0	2652	40.6	4901	76.9	7690	56.0
Jul 16-31	577	44.0	2274	34.8	1384	21.7	4235	29.8
Aug 1-15	181	13.8	499	7.6	86	1.3	766	5.4
Aug 16-31	146	11.1	79	1.2	CLOSED		225	1.6
Sept 1-15	CLOSED		0	0.0	CLOSED		0	0.0
Total	1312		6536		6417		14219	
Samples	SFA 1A		Number	$\%$ Sampled	Number	$\%$ Sampled	Number	$\%$ Sampled
Jun 15-30	0	0.0	7	8.0	CLOSED		Number	$\%$
Jul 1-15	28	27.5	56	63.6	536	75.6	620	69.0
Jul 16-31	33	32.4	20	22.7	167	23.6	220	24.5
Aug 1-15	16	15.7	3	3.4	6	0.8	25	2.8
Aug 16-31	25	24.5	2	2.3	CLOSED		27	3.0
Sept 1-15	CLOSED		0	0.0	CLOSED		0	0.0
Total	102		88		709		899	

Table 8. Percent of the 2022 Labrador FSC fisheries harvest sampled by size category (small $<63 \mathrm{~cm}$ and large $\geq 63 \mathrm{~cm}$). Note: 3 samples did not have size data.

	Small salmon			Large salmon			Unknown Size Samples	Total		
	Samples	Harvest	\% of Harvest	Samples	Harvest	\% of Harvest		Samples	Harvest	\% of Harvest
Northern SFA 1A	61	525	11.6	40	787	5.1	3	104	1312	7.9
Central SFA 1B	58	3506	1.7	30	3030	1.0	0	88	6536	1.3
Southern SFA 2	604	4367	13.8	105	2004	5.2	0	709	6371	11.1
Total	723	8398	8.6	175	5821	3.0	3	901	14219	6.3

Table 9. River age of Atlantic salmon sampled from the 2022 Labrador FSC fisheries sampling program. Note: 24 samples could not be interpreted for river age.

	Number of scale samples interpreted	River age (\%)												
		1	2	3	4	5	6	7						
Salmon Fishing Area	100	0.0	0.0	8.0	66.0	24.0	1.0	1.0						
Central SFA 1B	85	0.0	0.0	10.6	60.0	25.9	3.5	0.0						
Southern SFA 2		0.0	0.3	8.8	55.3	33.7	1.7	0.1						
All areas	691	0.0	0.2	8.9	57.0	31.8	1.8	0.2						

Table 10. Atlantic salmon tissue samples collected from the Labrador FSC and resident fisheries the were analysed for stock origin by area and size category (small $<63 \mathrm{~cm}$ and large $\geq 63 \mathrm{~cm}$) in 2022.

Area	Size Category	Tissue samples collected	Tissue samples successfully genotyped	\% Samples analysed	Harvest by number	\% Harvest sampled	\% Harvest analysed
Northern SFA 1A	Small	59	56	94.9	525	11.2	10.7
	Large	38	37	97.4	787	4.8	4.7
	Unknown	3	3	100.0			
	SFA 1A Total	100	96	96.0	1312	7.6	7.3
Central SFA 1B	Small	58	57	98.3	3506	1.7	1.6
	Large	29	27	93.1	3030	1.0	0.9
	Unknown						
	SFA 1B Total	87	84	96.6	6536	1.3	1.3
Southern SFA 2	Small	597	590	98.8	4367	13.7	13.5
	Large	102	102	100.0	2004	5.1	5.1
	Unknown						
	SFA Total	699	692	99.0	6371	11.0	10.9
All areas	Small	714	703	98.5	8398	8.5	8.4
	Large	169	166	98.2	5821	2.9	2.9
	Unknown	3	3	100.0			
	$\begin{aligned} & \hline \text { All areas } \\ & \text { Total } \end{aligned}$	886	872	98.4	14219	6.2	6.1

Table 11. Reporting groups and acronyms defined from the range wide single nucleotide polymorphism (SNP) genetic baseline for Atlantic salmon in the North Atlantic. See Bradbury et al. (2021) for baseline details and performance evaluation.

Reporting group	Group
acronym	

Table 12. Genetic mixture analysis of Atlantic salmon harvested in the 2022 Labrador FSC and resident fisheries using the SNP range wide baseline (Bradbury et al. 2021). Mean percent values (and 95% credible interval) by range wide genetic reporting groups (Figures 3 and 4) and salmon size category (small $<63 \mathrm{~cm}$ and large $\geq 63 \mathrm{~cm}$). Reporting groups with zero support have been excluded from the table. Note that credible intervals with a lower bound including zero indicate little support for the mean assignment value.

Reporting group	Total	Small	Large	SFA 1A	SFA 2	SFA 1B
Maine, United States	$\begin{aligned} & 0.1 \\ & (0.0,0.4) \end{aligned}$	$\begin{aligned} & 0.1 \\ & (0.0,0.5) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0.1 \\ & (0.0,0.5) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$
Quebec City Region	$\begin{aligned} & 0.4 \\ & (0.0,1.0) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & (0.0,5.9) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$
Gaspe Peninsula	$\begin{aligned} & \hline 0.3 \\ & (0.0,0.9) \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & (0.0,0.8) \end{aligned}$	$\begin{aligned} & \hline 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & (0.0,1.0) \end{aligned}$	$\begin{aligned} & \hline 0 \\ & (0.0,0.0) \end{aligned}$
St Lawrence North Shore Lower	$\begin{aligned} & 1.1 \\ & (0.5,2.0) \end{aligned}$	$\begin{aligned} & 1.0 \\ & (0.4,1.9) \end{aligned}$	$\begin{aligned} & 1.9 \\ & (0.3,4.8) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (0.6,2.5) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$
Newfoundland 2	$\begin{aligned} & 1.1 \\ & (0.4,2.0) \end{aligned}$	$\begin{aligned} & 1.0 \\ & (0.3,2.1) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (0.2,4.0) \end{aligned}$	$\begin{aligned} & \hline 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (0.5,2.4) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$
Newfoundland 1	$\begin{aligned} & 1.2 \\ & (0.5,2.1) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (0.5,2.5) \end{aligned}$	$\begin{aligned} & 0.7 \\ & (0.0,2.4) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (0.7,2.7) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$
Northern Newfoundland	$\begin{aligned} & \hline 0.5 \\ & (0.0,1.1) \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & (0.1,1.4) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & \hline 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (0.7,2.7) \end{aligned}$	$\begin{aligned} & \hline 0 \\ & (0.0,0.0) \end{aligned}$
Labrador South	$\begin{aligned} & \hline 69.7 \\ & (66.2,73.2) \end{aligned}$	$\begin{aligned} & \hline 75.5 \\ & (71.8,79.1) \end{aligned}$	$\begin{aligned} & \hline 57.5 \\ & (48.2,66.6) \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & (0.6,14.3) \end{aligned}$	$\begin{aligned} & \hline 86.7 \\ & (83.5,89.6) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (0.8,9.2) \end{aligned}$
Lake Melville	$\begin{aligned} & 12.3 \\ & (9.9,15.0) \end{aligned}$	$\begin{aligned} & 10.1 \\ & (7.7,12.8) \end{aligned}$	$\begin{aligned} & 13.1 \\ & (6.5,20.6) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 3.6 \\ & (2.2,5.4) \end{aligned}$	$\begin{aligned} & \hline 91.5 \\ & (84.4,96.8) \end{aligned}$
Labrador Central	$\begin{aligned} & 12.9 \\ & (10.1,15.8) \end{aligned}$	$\begin{aligned} & 9.5 \\ & (6.7,12.7) \end{aligned}$	$\begin{aligned} & 22.3 \\ & (14.4,31.3) \end{aligned}$	$\begin{aligned} & 85.2 \\ & (72.4,94.6) \end{aligned}$	$\begin{aligned} & 3.7 \\ & (2.2,5.4) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (0.5,9.0) \end{aligned}$
Ungava	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$	$\begin{aligned} & 0.3 \\ & (0.0,0.8) \end{aligned}$	$\begin{aligned} & 0 \\ & (0.0,0.0) \end{aligned}$			
Total samples	872	695	157	96	692	84

Figure 1. Map of Salmon Fishing Areas (SFAs 1A, 1B, 2 and 14B) and local communities in Labrador. Line across Lake Melville marks the division between Upper Lake Melville and the Labrador Inuit Settlement Area (LISA).

Figure 2. Bi-weekly distribution (\%) of the Labrador FSC and resident fisheries Atlantic salmon harvest and sampling by area.

Figure 3. Map of North American sample locations used in the SNP baseline for Atlantic salmon. The 21 North American genetic reporting groups are labelled and identified by colour. See Figure 4 for the remaining 9 North Atlantic baseline sampling locations (note: no location provided for the European Broodstock reporting group). See Bradbury et al. (2021) for baseline details and performance evaluation.

Figure 4. Map of sample locations from Greenland, Iceland and Europe used in the SNP baseline for Atlantic salmon and the 9 defined genetic reporting groups (labelled and identified by colour). See Figure 3 for North American locations (note: no location provided for the European Broodstock reporting group). See Bradbury et al. (2021) for baseline details and performance evaluation.

Region assignment
Figure 5. Bayesian estimate of the genetic mixture composition of Atlantic salmon samples from the 2022 Labrador FSC and resident fisheries by size category (small <63 cm and large $\geq 63 \mathrm{~cm}$) and area using the SNP range wide baseline for Atlantic salmon. Baseline locations refer to genetic reporting groups identified in Figures 3 and 4. Genetic reporting group assignment acronyms are explained in Table 11. Credible intervals with a lower bound including zero indicate little support for the mean assignment value.

Figure 6. Map of the locations where 12 Atlantic salmon that assigned to the USA genetic reporting group were sampled in the Labrador FSC and resident fisheries from 2006 to 2022.

